

Welcome to SOFT’s documentation!

You have reached the Quickstart documentation of SOFT, the Synchrotron-detecting Orbit Following
Toolkit. To get the source code of SOFT, check the
SOFT website [http://ft.nephy.chalmers.se/~hoppe/soft/] or
SOFT GitHub repository [https://github.com/hoppe93/SOFT/]. If you’re looking for the gory
mathematical details of how SOFT is implemented, you should look into the
SOFT Manual [http://ft.nephy.chalmers.se/~hoppe/soft/].

Contents:

	Introduction

	Compiling
	Dependencies

	Obtaining the code

	Compiling

	Usage

	How to run SOFT
	Examples

	Basic syntax

	Environments

	Magnetic equilibria
	Analytic circular

	Numeric

	Distribution functions
	File format

	Helper tools for CODE/NORSE

	Geometric kernels
	Output file

	Working with kernel function

	Polarization information
	What information does SOFT store?

	File format

	3D emission maps
	Solving for surface-of-visibility

	Visualizing

	Parameter reference
	Global options

	Particle settings

	Magnetic settings

	sycout settings

	The SDT format
	Basic structure

	Example SDT file

	Troubleshooting

Indices and tables

	Index

	Module Index

	Search Page

 [image: _images/soft.png]

Introduction

SOFT [http://ft.nephy.chalmers.se/~hoppe/soft/] is a synthetic synchrotron diagnostic that can
be applied to study the synchrotron radiation emitted by runaway electrons in tokamaks. By solving
the guiding-center equations of motion in a numeric magnetic equilibrium, the physics of the system
are utilized and allows SOFT to be applied to experimental scenarios.

Compiling

SOFT is written in C, and as such is straightforward to setup on a Linux system. While SOFT hasn’t
been tested on any other system, it should be possible compile and run on for example Windows and
Mac with some additional effort.

Dependencies

SOFT depends on a number other technologies, some of which are required for compilation, while
others can be compiled in optionally. Technologies that are absolutely mandatory in order to
compile SOFT are

	CMake [https://cmake.org/], for preparing necessary build files.

	A C compiler with OpenMP support (such as gcc [https://gcc.gnu.org/]).

	GNU Scientific Library [https://www.gnu.org/software/gsl/], for various mathematical
operations. If a version of GSL older than 2.0 is used, the GSL extension
interp2d [https://github.com/diazona/interp2d] must also be installed.

A number of libraries are also optional for compilation, and can be compiled in for additional
functionality. The optional libraries are

	HDF5 [https://www.hdfgroup.org/HDF5/] for reading/writing data in HDF5 format.

	MATLAB [https://www.mathworks.com/products/matlab.html], for reading/writing data in
MATLAB’s *.mat format.

	An MPI library, such as MPICH [https://www.mpich.org/] or
OpenMPI [https://www.open-mpi.org/]. Compiling in support for MPI allows running SOFT across
multiple computers, such as on a supercomputer cluster.

Obtaining the code

You may clone the latest build from the SOFT GitHub repository [https://github.com/hoppe93/SOFT]
via the command line:

$ git clone https://github.com/hoppe93/SOFT.git

or if you have your ssh keys configured with GitHub:

$ git clone git@github.com:hoppe93/SOFT.git

Compiling

Once the SOFT source code has been obtained and all required and desired dependencies have been
installed, navigate to the directory cloned from GitHub:

$ cd SOFT

Next, to compile SOFT, create a build directory, navigate to it, run CMake followed by make,
using the following set of commands:

$ mkdir build
$ cd build
$ cmake ../ -DUSE_HDF5=ON -DUSE_MATLAB=ON -DUSE_MPI=OFF
$ make

If the build was successful, the SOFT binary will be found under build/src/soft. The flags
starting with -D specify configuration options, and in the command above we see that in this
case SOFT would be configured with HDF5 and MATLAB support, but without MPI support. This is the
default, and would have happened even if those flags were not specified. To enable/disable
compilation for either of these libraries, simply specify ON/OFF as appropriate in the above.

Usage

All configuration of a SOFT run is done in a separate script file, commonly referred to as a
pi file (for Particle Information). As such, running SOFT is as simple as

$./soft pi

assuming the pi file has been setup appropriately. There are a large number of options that can
be specified in the pi file, and for this reason the details of using SOFT are left to the
How to run SOFT.

How to run SOFT

All configuration of a SOFT run is done in a separate configuration file, commonly referred to
as a pi file. In this section the basic structure of a pi file will be explained in detail.
For detailed information about which options can be set, pleaes consult the
SOFT manual [https://github.com/hoppe93/SOFT/master/docs/manual/Manual.pdf].

Examples

The best way to learn how to set up run scripts for SOFT is to see examples of such run scripts.
A basic pi file can look like the following:

Basic SOFT pi file
useequation=guiding-center-relativistic
usetool=sycamera

Specify magnetic field
magnetic_field=circular # Use analytic magnetic field
magnetic circular { B0=5; major_radius=0.68; minor_radius=0.22; safety_factor=1; }
domain_has_outer_wall=no # Remove outer device walls to prevent from blocking radiation

Set phase-space
particles {
 t=0,-1
 rdyn=0.84,1000
 p=3e7,3e7,1
 pitch=0.15,0.15,1
}

Specify properties for the sycamera tool
tool sycamera {
 aperture=0.006 # Side length (in m) of (square) detector
 cone=delta # Use the cone model (not full angular distribution)
 direction=0,1,0 # Normal vector of detector surface (not necessarily normalized)
 position=0,-1.069,0 # Position vector of detector, relative tokamak point of symmtetry
 product=image # Output a synchrotron image when done
 radiation=synchrotron_spectrum # Take spectrum of radiation into account
 spectrum=5e-7,1e-6 # Detector spectral range
 toroidal_resolution=3500 # Number of steps in toroidal integral
 vision_angle=2.0 # Size of field-of-view
}

Specify properties for the 'image' sycout
sycout image {
 pixels=1000
 name=image.dat
}

The settings available for SOFT are many more, and for a detailed list of which settings are
available, please consult the
SOFT manual [https://github.com/hoppe93/SOFT/master/docs/manual/Manual.pdf]. Further examples
of pi files for different purposes are:

	distpi [https://github.com/hoppe93/SOFT/blob/master/examples/distpi] – Illustrates how SOFT can
be run together with a runaway distribution function.

	hollowpi [https://github.com/hoppe93/SOFT/blob/master/examples/hollowpi] – An example of
simulating a hollow electron beam.

	simplepi [https://github.com/hoppe93/SOFT/blob/master/examples/simplepi] – The basic example
shown above, setting just the most important options.

	orbitpi [https://github.com/hoppe93/SOFT/blob/master/examples/orbitpi] – Shows how to use the
orbit following part of SOFT to simulate particle orbits.

Basic syntax

Options in a pi file are specified by first giving the name of the option, followed by an equal
sign, followed by the value to assign to the option. White-space around the equal sign is ignored.
Typically, everything between the equal sign and the end-of-line marker is considered part of the
assigned value, except for any white-space coming either directly after the equal sign, or directly
before the end-of-line-marker. It is however possible to put several settings on the same line by
separating them with semi-colons (;).

Comments can be given by preceding the comment text with a hashtag symbol (#). Any text
following the hashtag on the same line will be ignored. Note that comments cannot be ended
with a semi-colon.

Some options should be assigned vectors of data, such as the direction and rdyn options
(among others) in the above example. Each component of the vector must be separated by a comma,
and any white-space surrounding commas is ignored. Note that all floating-point numbers can be
specified using either decimal form (i.e. 1000 or 0.68) or C scientific notation
(i.e. 5e-7).

Environments

Some options in SOFT are considered global and are specified directly in the file, such as for
example useequation and usetool in the example above. Many options are however specific
to certain modules of SOFT, and they are instead specified inside the appropriate option
environment.

There are four different environments in SOFT, all of which are syntactically similar. With the
exception of the particles environment (which really just sets what could be considered
global options), they are also conceptually similar.

The magnetic, tool and sycout environments specify options for a particular SOFT
module, and the name of the module must be specified in the environment header. The settings
are then wrapped within curly brackets ({ and }) and given to the specified module.
Note that even if an environment for a module is present in the configuration file, it does
not mean that the module will automatically used. Other options must be set to enable modules.

The basic syntax for an environment environment configuring the module named module is:

environment module {
 ...
}

The particles environment does not require any module name to specified.

magnetic

The magnetic environment specifies settings for the magnetic equilibrium to use, as well as
the surrounding walls. Currently, there are two different so called magnetic handler modules
that can be used. The first and simplest is the circular magnetic handler which implements
simple analytic circular magnetic field with a constant safety factor. The second magnetic
handler, named numeric, allows the specification of a magnetic field numerically from for
example an HDF5 or MATLAB *.mat file.

particles

The particles environment sets a number of options relating to the phase-space of the run.
Since it is necessarily tied to the particles module of SOFT, the module name part of the
environment specification given above should be omitted.

In addition to specifying the bounds of and number of points in phase-space, the particles
environment can also be used to specify a different mass or charge of the simulated particle
species.

Note

The orbit tool for tracing particle orbits only allows simulating a single point of
phase-space at a time, and can otherwise give rise to some very anonymous errors.

tool

The tool environment sets the options for particular tool. A tool, in SOFT, is a module which
receives information about a computed orbit and processes it. Currently, there are two tools in
SOFT, and these are the orbit and sycamera tools. The orbit tool simply traces a
particle or guiding-center orbit, keeps track of a few addiational parameters, and outputs it all
to a CSV file.

The sycamera tool is the synchrotron camera (or rather detector) tool which gives SOFT its name.
A large part of the SOFT code is dedicated to this module, and the options set by this tool include
for example the type of synchrotron radiation model to use, the number of toroidal steps to take,
various detector properties among many other things.

sycout

Due to the great versatility of the sycamera tool, the types of output that could be obtained
it are numerous. Since each of the output types requires its own set of settings, a separate
environment for specifying settings to the output handler of the sycamera tool was created.

The sycout environment thus specifies settings of a sycamera output handler module. To
date there are five different sycout modules, namely

	Module name

	Description

	green

	Generates a Green’s function which relates the distribution of runaways to the
resulting spectrum or image. (Can) allow fast computation of image/spectrum.

	image

	Generates a synthetic synchrotron image.

	space3d

	Stores 3D information about all particles contributing to a synchrotron image
allows visualizing the corresponding surface-of-visibility.

	spectrometer

	Generates a spectrum curve.

	topview

	Stores information about where particles where located in the xy-plane when
when they emitted towards the detector. Allows visualizing the toroidal
distribution of particles that are visible to the detector.

Magnetic equilibria

There are currently two magnetic handler modules available for SOFT. The circular handler
implements a simple circular magnetic field with a constant safety factor, and is somewhat faster
than the alternative. The numeric allows the magnetic field to be loaded from numeric data,
which is interpolated. This handler is often the desired one as it allows complicated magnetic
geometries to be simulated.

Analytic circular

The circular magnetic handler implements the magnetic field:

\[\boldsymbol{B}(r,\theta) = \frac{B_0}{1-(r/R_m)\cos\theta} \left(
\frac{r}{q(r)R_m}\hat{\boldsymbol{\theta}} - \hat{\boldsymbol{\phi}} \right)\]

where \(r\) is the minor radius, \(\theta\) the poloidal angle, \(B_0\) the magnetic
field strength on the magnetic axis (\(r = 0\)), \(R_m\) is the major radius, \(q\)
is the safety factor, \(\hat{\boldsymbol{\theta}}\) is a unit vector in the poloidal
direction and \(\hat{\boldsymbol{\phi}}\) is a unit vector in the toroidal direction. While
this formula allows arbitrary q-profiles, SOFT currently only implements this magnetic field
with a linear q-profile.

The magnetic field shown above has three free parameters, namely the field strength \(B_0\),
the tokamak major radius \(R_m\) and safety factor \(q(r) = q_0\). These parameters
must be specified by the user, and are set by specifying the options B0, major_radius
and safety_factor respectively in the magnetic circular environment. For SOFT to be able
to determine when a particle escapes confinement and hits the wall, the minor radius of the
device must also be specified. A circular cross section is assumed. All options for the
circular magnetic handler are set according to

magnetic circular {
 B0 = 5
 major_radius = 0.68
 minor_radius = 0.22
 safety_factor = 1
}

Numeric

One of the great strengths of SOFT is that magnetic equilibrias can be specified as numeric data,
allowing complicated magnetic configurations, and in particular, experimentally measured data,
to be plugged into SOFT. Specifying a numeric equilibrium in the pi file is as simple as

magnetic_handler=numeric
magnetic numeric {
 name=/path/to/magnetic/equilibrium.mat
}

Currently, the equilibrium data can be stored in either a HDF5, (MATLAB) MAT or SDT file. Both
HDF5 and MATLAB files can be created easily with user-friendly tools such as Python or MATLAB,
while SDT (for Semi-Descriptive Text) is a SOFT-specific text-based format which is likely the
best choice if the magnetic equilibrium is generated using a small C/C++ program which is
difficult to interface with HDF5 or MATLAB.

Since SOFT assumes the magnetic field to be toroidally symmetric, the magnetic field components
in a poloidal plane must be specified. SOFT uses a cylindrical coordinate system for specifying
the magnetic field, so that \(\boldsymbol{B} = B_r \hat{\boldsymbol{r}} + B_z\hat{\boldsymbol{z}} + B_\phi \hat{\boldsymbol{\phi}}\),
where \(B_r \hat{\boldsymbol{r}}\) denotes the component radially out from the point of
symmetry of the tokamak, \(B_z\hat{\boldsymbol{z}}\) denotes the component in the vertical
direction, and \(B_\phi\hat{\boldsymbol{\phi}}\) denotes the component in the toroidal
direction, perpendicular to the poloidal plane in which the magnetic field is given.

Variables

Both HDF5, MATLAB and SDT files have a variable concept where data within the file is
named. Because of this, SOFT looks for certain variables in the datasets, loads them and
gives them meaning in the code. The following variables must be present in all SOFT
magnetic equilibrium files:

	Variable

	Type

	Description

	Br

	m-by-n matrix

	Radial component of magnetic field (radius-by-z).

	Bphi

	m-by-n matrix

	Toroidal component of magnetic field (radius-by-z).

	Bz

	m-by-n matrix

	Vertical component of magnetic field (radius-by-z).

	desc

	String

	A longer description of the equilibrium. Must be present, but
may be empty.

	maxis

	1-by-2 vector

	Specifies the location of the magnetic axis in the
\((R, z)\)-plane.

	name

	String

	Name of the equilibrium. Must be present, but may be empty.

	r

	1-by-m vector

	List radial points in which the components of the magnetic
are given.

	separatrix

	2-by-many vector

	List of contour points marking the separatrix in the
\((R, z)\)-plane.

	wall

	2-by-many vector

	List of contour points marking the bounds of the device in
the poloidal plane.

	z

	1-by-n vector

	List of vertical points in which the components of the
magnetic field are given.

Note

Only one of the separatrix and wall variables is required to be present in the
equilibrium file. Both may be present, and in that case the domain contour to use can be
specified as an additional option to the numeric magnetic handler. By default the
wall contour will be used if available.

Distribution functions

In SOFT, distribution functions depend on three variables, namely the major radius \(\rho\)
at which the guiding-center orbit was initiated, the momentum \(p\) of the particle, as well
as the cosine of the pitch angle \(\xi = \cos\theta_\mathrm{p}\) in the outer midplane.

File format

Distribution functions are given to SOFT as Matlab MAT-files. SOFT expects the following
variables to be present in the file:

	Name

	Description

	description

	String describing the distribution function.

	f

	Actual distribution function. An \(n_r\)-by-\(n_pn_{\xi}\) matrix (see below).

	name

	String naming the distribution function.

	p

	Vector containing points of momentum. Size 1-by-\(n_p\).

	punits

	String describing the units of p. Either ev, normalized or si.

	r

	Vector containing radial points. Size 1-by-\(n_r\).

	xi

	Vector containing (cosine of) pitch angle points. Size 1-by-\(n_{\xi}\).

The most important variable in a SOFT distribution function file is f, which is the actual
distribution function. The variable is stored as a matrix with each row representing a momentum-space
distribution function, i.e. with the radial coordinate changing along the row index.

Each row of f corresponds to a momentum-space distribution function, shaped as one long
\(n_p\times n_{\xi}\) vector. The elements are ordered into \(n_{\xi}\) groups of \(n_p\)
elements, so that the first \(n_p\) elements of the vector corresponds to holding \(\xi\)
fixed and varying \(p\).

The name and description variables are fairly arbitrary and are only included to provide
the user with basic information about the distribution function.

The p, r and xi variables are vectors consisting of \(n_p\), \(n_r\) and \(n_{\xi}\)
elements respectively. Together, the vectors specify the grid in momentum, radius and (cosine of)
pitch angle on which the distribution function is defined.

To allow users to specify momentum coordinates in the units most convenient for them, and more
importantly to prevent mix-ups of used units, the variable punits must be provided specifying
the units used for the momentum variable. Allowed values are ev (for momentum in \(\text{eV}/mc\)),
normalized (for \(p\equiv\gamma\beta\), where \(\gamma\) is the electron’s Lorentz factor and
\(\beta\) is the electron’s speed normalized to the speed of light) and si (for SI units, i.e.
\(\text{kg}\cdot\text{m/s}\)).

Note

Even though CODE is commonly used to generate distribution functions for SOFT, plain CODE
distribution functions are not directly compatible with SOFT. The distribution function
given as output by CODE consists of a set of Legendre polynomial coefficients used in evaluating the
distribution function \(f(p,\xi)\). SOFT on the other hand requires the function values
to be already evaluated.

Helper tools for CODE/NORSE

A nice graphical helper tool has been developed for analyzing CODE/NORSE distributions and
generating distributions readable by SOFT. The tool is called
codeviz [https://github.com/hoppe93/codeviz] and is available on GitHub.

Geometric kernels

The way SOFT is constructed makes it possible to rewrite the “SOFT equation”
on the form

\[I_{ij} = \int\mathrm{d}\rho\mathrm{d}p_\parallel\mathrm{d}p_\perp\, f(\rho, p_\parallel, p_\perp) \hat{I}_{ij}(\rho, p_\parallel, p_\perp, \boldsymbol{x}_0)\]

where \(I_{ij}\) is the brightness of pixel \((i, j)\), and
\(\hat{I}_{ij}\) denotes the geometric kernel function for a particular
detector/tokamak combination, that connects the distribution of runaways
of a particular velocity and initial position, with the image seen by a
particular camera in a specific tokamak. The great benefit of this formulation
is that only a set of multiplications are required to produce the synchrotron
radiation image seen by a camera. A similar formulation for the synchrotron
spectrum exists.

The format of the Green’s function is specified in the pi-file using
the dimensions option. The value of this option is a set of characters
denoting each of the variables that should appear in the Green’s function.
For example, dimensions = r12ij would generate a Green’s function containing
information about radius, velocity coordinate 1, velocity coordinate 2 as well
as both pixels of the image. The possible characters and their meaning are:

	Function

	Description

	1

	Velocity coordinate 1. Depends on which coordinates are used in the pi-file.

	2

	Velocity coordinate 2. Depends on which coordinates are used in the pi-file.

	i

	The “y”-axis of the image.

	j

	The “x”-axis of the image.

	r

	Radial coordinate.

	w

	Spectrum wavelength.

To generate a geometric kernel function with SOFT, create a new sycout
environment in your pi file with the format

sycout green {
 format=mat
 output=greenW.mat
 function=r12ij
 pixels=60
}

All options for the green sycout are documented in the Parameter reference.

Output file

The file generated by SOFT containing the geometric kernel function will
contain the variables listed in the table below. The actual geometric
kernel functions is found as a vector named func which can be
reshaped to be handled more easily.

	Variable

	Type

	Description

	func

	1-by-\(n_\rho n_1 n_2 n_\lambda n_i n_j\) vector

	Geometric kernel function

	param1

	1-by-\(n_1\) vector

	Velocity parameter #1

	param1name

	String

	Name of velocity parameter #1. E.g. ppar.

	param2

	1-by-\(n_2\) vector

	Velocity parameter #2

	param2name

	String

	Name of velocity parameter #2. E.g. pperp.

	pixels

	Integer

	Number of pixels

	r

	1-by-\(n_\rho\) vector

	List of radial points

	stokesparams

	Integer

	1 if elements are Stokes parameters. 0 if only intensities are stored.

	type

	String

	Type of geometric kernel. Either of the functions listed in the table above.

	wavelengths

	1-by-\(n_\lambda\) vector

	List of wavelength points.

Working with kernel function

To more easily work with the geometric kernel function it should be reshaped
into an appropriately dimensioned array. In Matlab, this can be done through

load softOutput % Kernel function assumed to be located in 'softOutput.mat'

% Get number of elements in each dimension
nw = length(wavelengths);
n1 = length(param1);
n2 = length(param2);
nr = length(r);

% Reshape kernel function
Ihat = reshape(func, [pixels, pixels, nw, n2, n1, nr]);

% Access image at radius #1, param1 #2, param2 #3 and wavelength #4
I = squeeze(Ihat(:, :, 4, 3, 2, 1));

and similarly in Python

import numpy as np
import scipy.io

Load mat-file
matfile = scipy.io.loadmat('softOutput.mat')

Set variables
func = matfile['func'][0]
pixels = matfile['pixels'][0][0]
param1 = matfile['param1'][0]
param1name = matfile['param1name'][0]
...and the same for all other variables...

Get number of elements in each dimension
nr = r.size
n1 = param1.size
n2 = param2.size
nw = wavelengths.size

Reshape kernel function
Ihat = np.reshape(func, (nr, n1, n2, nw, pixels, pixels))

Note

The order in which the number of elements are given to reshape is very
significant!

The above examples are for a function of type r12ij.

Polarization information

When radiation=synchrotron_spectrum SOFT will also store information about the
polarization of the detected radiation. Using the polimage and polspectrometer
sycouts, it is possible to generate output files containing the polarization
information in image or spectrum format. In this section usage and interpretation
of the data will be briefly be discussed.

What information does SOFT store?

SOFT stores the four Stokes parameters [https://en.wikipedia.org/wiki/Stokes_parameters],
\(S\), \(Q\), \(U\) and \(V\), averaged over the relevant parameters
(depending on which model is being used). The emitted synchrotron power per unit frequency,
per unit solid angle, can be written in terms of the two quantities \(A_\parallel\) and
\(A_\perp\) as

\[\frac{\mathrm{d}^2 P}{\mathrm{d}\omega\mathrm{d}\Omega} \propto \left| -\boldsymbol{\epsilon}_\parallel A_\parallel + \boldsymbol{\epsilon}_\perp A_\perp \right|^2.\]

where \(\boldsymbol{\epsilon}_\parallel\) is a vector corresponding to polarization in
the gyration plane, and \(\boldsymbol{\epsilon}_\perp\) to polarization in the plane
orthogonal to that. It can be shown that the Stokes parameters can be expressed using
\(A_\parallel\) and \(A_\perp\) through

\[\begin{split}I &\propto A_\parallel^2 + A_\perp^2,\\
Q &\propto \left(A_\perp^2 - A_\parallel^2 \right)\cos 2\beta,\\
U &\propto \left(A_\perp^2 - A_\parallel^2 \right)\sin2\beta,\\
V &\propto 2A_\parallel A_\perp \cos 2\beta.\end{split}\]

The angle \(\beta\) is the angle between the plane of parallel polarization and
the plane in which the horizontal polarization is measured. The first Stokes parameter,
\(I\), is just the intensity of the radiation as obtained also from the SOFT
image sycout.

The fourth Stokes parameter \(V\) is often quoted as identically zero in the literature,
a result stemming from that the object \(A_\parallel A_\perp\) is odd in the
angle \(\psi\) between the guiding-center’s emission cone and a line-of-sight. When
averaged over all emission angles, the contribution to \(V\) therefore cancels
identically. In the angular and spectral distribution implemented in SOFT however, we
do not neglect the finite emission width, and therefore obtain a finite contribution to
the \(V\) parameter, since it is possible for only part of the emission cone to
overlap the detector (corresponding to “cut-offs” in the integration over emission angle).

For a derivation of the full \(\frac{\mathrm{d}^2 P}{\mathrm{d}\omega\mathrm{d}\Omega}\) ,
see for example Jackson’s “Electrodynamics”, Landau-Lifshitz “The Classical Theory
of Fields” or Mathias Hoppe’s Master’s thesis (link [http://ft.nephy.chalmers.se/publications/Hoppe_Masters_Thesis_Final.pdf]).

File format

The polimage sycout of SOFT outputs a variable-based file (such as SDT, HDF5 or
Matlab) containing the following variables:

	Variable

	Description

	detectorPosition

	Vector specifying the position of the detector

	detectorDirection

	Central viewing direction of the detector

	detectorVisang

	Vision angle of the detector

	StokesI

	Stokes \(I\) parameter

	StokesQ

	Stokes \(Q\) parameter

	StokesU

	Stokes \(U\) parameter

	StokesV

	Stokes \(V\) parameter

	wall

	Wall data used for the simulation

3D emission maps

Due to the highly anisotropic nature of bremsstrahlung and synchrotron
radiation combined with the fact that radiation is only detected if it’s
emitted directly at the detector, a given detector can only measure radiation
from particles in a certain regions of space. It can be shown that these
regions of space all satisfy (approximately) the condition

(1)\[\hat{\boldsymbol{b}}(\boldsymbol{x})\cdot\frac{\boldsymbol{x}-\boldsymbol{X}}{\left|\boldsymbol{x}-\boldsymbol{X}\right|} = \cos\theta_{\mathrm{p}},\]

where \(\hat{\boldsymbol{b}}\) is the magnetic field unit vector,
\(\boldsymbol{x}\) is the particle’s position, \(\boldsymbol{X}\) is
the detector’s position and \(\theta_{\mathrm{p}}\) denotes the particle’s
pitch angle (note that the pitch angle also varies as the particle moves in
the inhomogeneous magnetic field, and therefore picks up a dependence on
\(\boldsymbol{x}\)). The solution to this equation, i.e. the points
\(\boldsymbol{x}\) satisfying it, trace out a surface in real space which
we refer to as the surface-of-visibility. When the detector is located in
the midplane, this surface typically takes the shape of a twisted cylinder.

Solving for surface-of-visibility

Using SOFT it is possible to solve (1), accounting for the finite
detector size. This is done by adding the sycout space3d (see
space3d for a parameter reference) to your SOFT
runscript. As with every sycout, you must also add a line product=space3d
to the tool sycamera block. One example definition of the sycout is a
follows

sycout space3d {
 output=outfile.mat
 type=pixels
 pixels=200
 point0=-0.5,-0.25,-0.25
 point1=0.5,0.25,0.25
}

The output parameter specifies the name of the output file, and the
type parameter specifies the algorithm to use for storing 3D information.
Setting type=pixels means SOFT will divide the space into \(N^3\)
cells, where \(N\) is the value assigned to the pixels parameter,
between the two edge points point0 and point1 (see the figure below;
the red dots indicate the locations of the edge points). During the SOFT run,
each cell records the radiation being emitted from the box and accumulates it.

[image: _images/box.png]
The other value available for type is real, which stores the exact
coordinates of each point that contributes to the final image. This means that
the output will be more detailed, but it will also grow with each particle.

Visualizing

Visualization of space3d files is complicatd by the fact that each point
represents emitted light, which adds together along lines of sights. A simple
C program has been written by Mathias for generating sequences of PNG images
from S3D output files. The program is available on GitHub:
s3dvid [https://github.com/hoppe93/s3dvid].

Parameter reference

There are a number of settings that can be specified in a pi file, and each of the SOFT modules
introduces its own set of options. In this section a complete list of all the options that can be
set in a pi file are given.

Contents

	Global options

	Particle settings

	Magnetic settings

	circular

	numeric

	sycout settings

	green

	image

	space3d

	spectrometer

	topview

Global options

	
debug

	
Default value: 0

Example line: debug=1

Allowed values: 0 or 1

If set to 1, debug output will be generated and written to stdout during the run. Default
value is 0.

	
domain_has_outer_wall

	
Default value: yes

Example line: domain_has_outer_wall=no

Allowed values: yes or no

If set to no, ignores all points of the wall/separatrix outside \(R = R_m\), where
\(R_m\) denotes the radial coordinate of the magnetic axis. This will allows the placement
of a detector outside the device. The mid-pole will still be present to block out radiation.

	
interptimestep

	
Default value:

Example line:

Allowed values:

TODO

	
magnetic_field

	
Default value: None

Example line: magnetic_field=numeric

Allowed values: circular and numeric

Specifies the name of the magnetic field handler module to use. Either circular or
numeric.

	
maxtimestep

	
Default value: None

Example line: maxtimestep=1e-11

Allowed values: Any positive real value

Sets the maximum allowed size of a timestep in the equation solver (whichever it may be).
If the adaptive timestep becomes larger than this, it is automatically adjusted to this
value. By default there is no limit on how long the timestep can be.

	
nodrifts

	
Default value: no

Example line: nodrifts=yes

Allowed values: yes or no

If set to yes, ignores the drift terms in the first-order guiding-center equations of
motion (effectively solving the zeroth-order guiding-center equations of motion). This option
only influences behaviour of the code when the guiding-center equations of motion are solved.
By default the value of this option is no so that the drift terms are kept.

	
progress

	
Default value: 0

Example line: progress=10

Allowed values: Any non-negative integer

Specifies how many times during the run SOFT should print information about the current progress.
Information will be printed in uniform steps as particles (defined as points in phase-space) are
completed.

	
threads

	
Default value: Number of threads suggested by OpenMP

Example line: threads=3

Allowed values: Any positive integer (no upper limit)

Overrides the number of threads started by each (MPI) process. By default, SOFT will start
the number of threads indicated by the OMP_NUM_THREADS environment variable in each
process.

	
tolerance

	
Default value: 1e-12

Example line: tolerance=4e-13

Allowed values: Any positive real number

Specifices the tolerance in the RKF45 solver. The default tolerance is set by the tool used in
the run. The orbit tool defaults to a tolerance of \(10^{-7}\), while the sycamera
defaults to a tolerance of \(10^{-12}\).

	
useequation

	
Default value: None

Example line: useequation=guiding-center-relativistic

Allowed values: guiding-center, guiding-center-relativistic, particle, particle-relativistic.

Determines which set of equations of motion to solve. Note that the sycamera tool requires
that the (relativistic) guiding-center equations of motion be solved. Possible values for this
option are particle, particle-relativistic, guiding-center and
guiding-center-relativistic.

	
usetool

	
Default value: None

Example line: usetool=sycamera

Allowed values: orbit, sycamera

Sets the name of the tool to use. Can either be orbit (which traces orbits), or sycamera
(which computes various synchrotron-radiation quantities for runaway electrons).

Particle settings

	
charge

	
Default value: One electron charge (i.e. -1)

Example line: charge=4

Allowed values: orbit, sycamera

The charge of the particle to simulate, in units of the elementary charge (\(e \approx 1.602\times 10^{-19}\,\mathrm{C}\)).
The default value is -1, i.e. the electron charge.

	
cospitch

	
Default value: None

Example line: cospitch=1,0.95,100

Allowed values: A number \(\in [0,1]\); A number \(\in[0,1]\); any positive integer

Specifies the range of cosines of the particle’s pitch anle with which to initiate orbits. The
first argument specifies the first value in the range to give to particles, while the second
argument argument specifies the last value in the range. The third argument specifies the total
number of values to simulate. Example: cospitch = 0.999,0.97,10, while initiate ten particles
with cosine of the pitch angle values between 0.97 and 0.999.

	
gc_position

	
Default value: Yes

Example line: gc_position=no

Allowed values: yes or no

If set to yes, assumes that the position given specifies the guiding-center position when
solving the guiding-center equations of motion. If set to no, the program instead assumes
that the particle position is specified and compensates accordingly when solving the
guiding-center equations of motion. Has no effect when solving the full particle orbit.

	
mass

	
Default value: One electron mass (\(0.000548579909\,\mathrm{u}\))

Example line: mass=2

Allowed values: Any positive real number

The particle mass in unified atomic mass units (u). The default value is 0.000548579909,
corresponding to the electron mass.

	
p

	
Default value: None

Example line: p=1e6,1.2e7,10

Allowed values: Any real number; any real number; any positive integer

Specifies the range of momenta with which to initiate orbits. The first argument specifies
the first momentum value to give to particles while the second argument specifies the last
momentum value. The third argument specifies the total number of momentum values to simulate.
Example: p = 3e7,4e7,5.

	
pitch

	
Default value: None

Example line: pitch=0.05,0.15,14

Allowed values: A number \(\in [0,\pi]\); a number \(\in [0,\pi]\); any positive integer

Specifies the range of pitch angles with which to initiate orbits. The first argument specifies
the first pitch angle to give to particles while the second argument specifies the last
pitch angle. The third argument specifies the total number of pitch angles to simulate.
Example: pitch = 0.03,0.25,15.

	
ppar

	
Default value: None

Example line: ppar=1e6,1.2e7,14

Allowed values: Any real number; any real number; any positive integer

Specifies the range of parallel momenta with which to initiate orbits. The first argument specifies
the first parallel momentum to give to particles while the second argument specifies the last
momentum value. The third argument specifies the total number of momentum values to simulate.
Example: ppar = 3e7,4e7,5.

	
pperp

	
Default value: None

Example line: pperp=1e6,1.2e7,14

Allowed values: Any real number; any real number; any positive integer

Specifies the range of perpendicular momenta with which to initiate orbits. The first argument specifies
the first perpendicular momentum to give to particles while the second argument specifies the last
momentum value. The third argument specifies the total number of momentum values to simulate.
Example: pperp = 3e6,7e6,15.

	
r

	
Default value: None

Example line: r=0.68,0.84,14

Allowed values: Any real number inside device; any real number inside device; any positive integer

Specifies the range of radii with which to initiate orbits. The first argument specifies
the first radius to give to particles while the second argument specifies the last
radius. The third argument specifies the total number of radii to simulate.
Example: r = 0.68,0.84,80.

	
rdyn

	
Default value: None

Example line: rdyn=0.84,14

Allowed values: Any real number inside device; any positive integer

Specifies the outermost radius at which to initiate orbits, as well as the number of radii
to drop particles on. The innermost radius is automatically set as the magnetic axis, and
particles will only be dropped at a radius in the interval if their “effective magnetic axis”
radial location is less than the currently simulated. The “effective magnetic axis” arises
due to orbit drifts, and if it’s presence is not properly accounted for, weird bright or
dark spots will show up in synchrotron image (when orbit drifts are taken into account).
Example: rdyn = 0.84,80.

	
t

	
Default value: 0,-1

Example line: t=0,1e-6

Allowed values: Any real number; any real number

The first argument of this parameter specifies the reference time. For most purposes this
parameter is most conveniently set to 0. The second argument specifies the end time, at
which point an orbit should be considered finished and no longer followed. If the second
argument is less than the reference time (the first argument), the orbit will be followed
for one full poloidal orbit, or until the simulation clock is greater than minus the
end time.

Magnetic settings

Two different magnetic handler modules are provided with SOFT. These are the circular module,
implementing a simple analytical magnetic field with a circular cross-section and constant
safety factor, as well as the numeric module, which loads 2D numeric magnetic fields.

Performance-wise, the numeric module is somewhat slower than the circular model, due to
that the former interpolates the 2D magnetic field with a cubic spline. The difference is however
only about a factor of two.

circular

	
B0

	
Default value: 1

Example line: B0=5.2

Allowed values: Any real number

Specifies the magnetic field strength on the magnetic axis, i.e. on the circle
\(R = R_{\mathrm{m}}, Z = 0\). In units of Tesla.

	
major_radius

	
Default value: 1

Example line: major_radius=2

Allowed values: Any positive real number

Specifies the major radius of the tokamak. In units of meter.

	
minor_radius

	
Default value: 1

Example line: minor_radius=1

Allowed values: Any real number

Specifies the minor radius of the device. In units of meter. This parameter only influences
the location of the walls of the tokamak, and does not affect the magnetic field.

	
safety_factor

	
Default value: 1

Example line: B0=1

Allowed values: Any real number

The safety factor, or \(q\)-factor of the tokamak magnetic field. In this analytical
model of the magnetic field, the safety factor is a constant.

numeric

	
axis

	
Default value: Set in equilibrium file

Example line: axis=0.68,-0.002

Allowed values: Any positive real number; any real number

Specifies the location of the magnetic axis in a poloidal plane. The first coordinate
specifies the major radial location (\(R\)) of the axis, and the second coordinate specifies
the vertical location (\(Z\)) of the axis. SOFT requires the magnetic equilibrium
data file to give this value, but under some circumstances it may be desirable to
override the value set in the equilibrium file, in which case this parameter can be used.

	
file

	
Default value: None

Example line: file=/path/to/magnetic/equilibrium.mat

Allowed values: Any real number

Specifies the name of the file containing the magnetic equilibrium data to use. The
format that this file must have is described under Magnetic equilibria. The format of
the file is determined by analyzing the file name extension. All file formats supported
by the SOFT file interface can be used.

	
format

	
Default value: auto

Example line: format=mat

Allowed values: auto, hdf5 or mat

Overrides the format specifier for the magnetic equilibrium data file. auto
is the default, which causes SOFT to determine the file format based on the filename
extension. hdf5 causes SOFT to interpret the data file as an HDF5 file. mat
causes SOFT to interpret the data file as a Matlab MAT file.

	
wall

	
Default value: any

Example line: wall=separatrix

Allowed values: any, separatrix, wall

Specifies which type of wall should be used. Equilibrium data files can contain two types
of “walls”, namely the actual tokamak wall cross-section or the separatrix/last closed flux surface.
SOFT only requires one of these two types to be present in the data file, and with any set,
the tokamak wall will be first be considered, but if it’s not present in the file, the separatrix
will be used instead. The wall and separatrix options forces the use of either of
the two types. The wall is the structure beyond which particles will be considered as lost
and no longer followed.

sycout settings

A sycout (short for SYnchrotron Camera OUTput) is an output module that is
coupled to the sycamera tool of SOFT. Currently the following sycouts are available:

	green – Generates a Green’s function

	image – Generates a camera image

	polimage – Generates a camera image with polarization information

	polspectrometer – Generates a spectrum with polarization information

	space3d – Stores 3D information about the contributions to an image

	spectrometer – Generates a spectrum

	topview – Stores X and Y coordinates of contributions to an image. Creates a top-down “map” of contributions.

green

The green sycout allows you to generate Green’s functions for images, spectra or
any kind of function you can imagine. Green’s functions are sometimes also known as
weight functions and are essentially mappings from a distribution function to a quantity
such as an image, spectrum or combination thereof.

Instructions on how to use this sycout are available under :ref:`geomkern`.

	
format

	
Default value: Auto-determined from output filename extension

Example line: format=mat

Allowed values: h5, hdf5, mat, out, sdt

Overrides the default setting for what file format to store the output in.
If not set, the output file format is determined based on the filename extension
of the output file. h5 and hdf5 forces HDF5 output. mat forces
Matlab MAT output. out and sdt forces SOFT self-descriptive text (SDT)
format output (text-based).

	
function

	
Default value: None

Example line: function=r12ij

Allowed values: Any (non-repeating) combination of the characters 1, 2, i, j, r, w

Sets the shape and contents of the Green’s function. A more detailed description
of how this option works can be found under Geometric kernels.

	
output

	
Default value: None

Example line: output=outputfile.mat

Allowed values: Any non-line-breaking string

Sets the name of the output file. The format of the output file is determined based
on the extension part of this setting unless the format option has also
been specified. By extension is meant everything that comes after the last dot (.).

	
pixels

	
Default value: None

Example line: pixels=520

Allowed values: Any positive integer

Sets the number of pixels of the image, i.e. the number of elements in each of the i
and j dimensions. Only required if either i or j appears in the function option.

	
stokesparams

	
Default value: no

Example line: stokesparams=yes

Allowed values: yes or no

If set to yes, each of the four Stokes parameters I, U, Q and V will be stored in
the Green’s function (thereby giving it an extra dimension with four elements). If
set to no, only the intensity parameter is stored, which is the value commonly
measured by spectrometers and cameras.

	
suboffseti

	

	
suboffsetj

	
Default value: 0

Example line: suboffseti=20

Allowed values: Any non-negative integer

Green’s functions for images tend to become quite large, and in many cases much of the
Green’s function is zero and provides no interesting information. In these cases, a subset
of the image can be stored so that the correct wide-angle image distortion is still present.
These offset parameters specify the offsets in the i and j directions respectively from
which the image that is to be stored should start.

	
subpixels

	
Default value: Same as ``pixels``

Example line: subpixels=30

Allowed values: Any positive integer

Specifies the number of pixels in each of the i and j directions of the subset image.
Since the subset image must lie within the full image, suboffseti``+``subpixels and
suboffsetj``+``subpixels must both be less than or equal to pixels.

image

The image sycout generates a camera image.

	
brightness

	
Default value: intensity

Example line: brightness=histogram

Allowed values: bw, histogram, intensity

Specifies how pixels should be colored. With bw (for black-and-white), pixels are
simply marked if they receive a contribution. Thus, if any radiation hits the pixel
during the run, the pixel will contain the value 1 at the end of the run and 0 otherwise.

The histogram option specifies that each hit in a pixel should increase the value
of the pixel by 1. The radiation intensity reaching the pixel is not considered.

The intensity option takes the emitted radiation intensity into account, including
spectral effects (if enabled through other options).

	
includeseparatrix

	
Default value: yes

Example line: includeseparatrix=no

Allowed values: no and yes

Specifies whether or not to include separatrix data from the input magnetic
equilibrium data file in the output. By default, it is set to yes. If no separatrix
data is available, the separatrix variable is omitted from the output file.

	
includewall

	
Default value: yes

Example line: includewall=no

Allowed values: no and yes

Specifies whether or not to include wall data from the input magnetic
equilibrium data file in the output. By default, it is set to yes. If no wall
data is available, the wall variable is omitted from the output file.

	
name

	
Default value: None

Example line: name=output-file.mat

Allowed values: Any string allowed by the underlying file system

Specifies the name of the file to which the output will be written. The output
is written through the SOFT file interface which means it will be either in
a HDF5 file, a Matlab MAT file or a SOFT SDT (Self-Descriptive Text) format.
The file format is determined based on the filename extension. For HDF5, use
either .h5 or .hdf5, for Matlab MAT use .mat, and for SDT any other extension
(though .sdt is recommended).

	
pixels

	
Default value: None

Example line: pixels=300

Allowed values: Any positive integer

Sets the number of pixels in the image. Images are always square and have the same
number of pixels in the x (i) direction as in the y (j) direction.

space3d

The space3d can be used to store 3D data about the points of space that contribute
to an image. A description about how to use it can be found in space3d.

	
output

	
Default value: None

Example line: output=name-of-outputfile.mat

Allowed values: Any string allowed by the underlying file system

Name of the file to which output should be written. The space3d module
uses the SOFT file interface, meaning output can be written in either
HDF5, Matlab MAT or SOFT SDT (Self-Descriptive Text) format. The format
of the output file is determined based on the filename extension. For HDF5
use .h5 or .hdf5, for Matlab MAT use .mat, and for SDT use any other
extension (though .sdt is recommended).

	
pixels

	
Default value: None

Example line: pixels=300

Allowed values: Any positive integer

When type=pixels, sets the number of pixels in each direction of the
bounding box. A value of for example 100 means that there will be a total
of \(100\times 100\times 100 = 1\,000\,000\) “pixels” in the box.

	
point0

	
Default value: None

Example line: point0=.40,-.75,.20

Allowed values: Any real number; any real number; any real number

Specifies one of the two defining edge points of the bounding box.

	
point1

	
Default value: None

Example line: point1=.63,-.15,-.20

Allowed values: Any real number; any real number; any real number

Specifies one of the two defining edge points of the bounding box.

	
type

	
Default value: None

Example line: type=pixels

Allowed values: pixels, real

Specifies the type of 3D object to store. pixels divides the
bounding box into a number of smaller boxes and collects the contribution
in each of those (the number of boxes is determined by the pixels option).
This 3D type is fixed in size and is represented as a simple 3D array.

The real type stores the real location of each particle that contributes
to the image. This 3D grows in size with the number of particles that hit
the detector, and is stored as a sparse matrix. It’s usually very difficult
to determine the final size of this 3D type, but it gives much more detailed
data and can sometimes be the more space-efficient option.

spectrometer

The spectrometer sycout stores spectra.

	
name

	
Default value: None

Example line: name=spectrum.mat

Allowed values: Any string allowed by the file system

Name of the output file.

topview

The topview sycout generates a top map of the tokamak, showing where in
the xy-plane radiation comes from. Note that the image is line-integrated along
the z direction, and bright areas in the top view therefore do not necessarily
correspond to bright areas in the image.

	
brightness

	
Default value: intensity

Example line: brightness=histogram

Allowed values: bw, histogram, intensity

Specifies how pixels should be colored. With bw (for black-and-white), pixels are
simply marked if they receive a contribution. Thus, if any radiation hits the pixel
during the run, the pixel will contain the value 1 at the end of the run and 0 otherwise.

The histogram option specifies that each hit in a pixel should increase the value
of the pixel by 1. The radiation intensity reaching the pixel is not considered.

The intensity option takes the emitted radiation intensity into account, including
spectral effects (if enabled through other options).

	
name

	
Default value: None

Example line: name=output-file.mat

Allowed values: Any string allowed by the underlying file system

Specifies the name of the file to which the output will be written. The output
is written through the SOFT file interface which means it will be either in
a HDF5 file, a Matlab MAT file or a SOFT SDT (Self-Descriptive Text) format.
The file format is determined based on the filename extension. For HDF5, use
either .h5 or .hdf5, for Matlab MAT use .mat, and for SDT any other extension
(though .sdt is recommended).

	
pixels

	
Default value: None

Example line: pixels=300

Allowed values: Any positive integer

Sets the number of pixels in the topview. Topviews are always square and have the same
number of pixels in the x (i) direction as in the y (j) direction.

The SDT format

The SDT format (for SOFT Descriptive Text or Self-Descriptive Text or
Semi-Descriptive Text) was developed in order to import magnetic
field data from systems with no HDF5 or MATLAB support. It is a very simple
text-based format without fancy features and with little safety. It is
recommended that users stick to HDF5 or MATLAB files whenever possible.

Basic structure

Just as MATLAB files (and in a sense, HD5 files), SDT files contains a set of
variables. Each variable consists of a header and a body. The header is
always one line and specifies the name and dimensions of the variable. The body
(which comes on the very next line) is at least one line and contains the data
of the variable, in ASCII format. Variables are separated by empty lines.

The header always consists of two integers and a string, all separated by
spaces. The first integer specifies the number of rows in the data. The second
integer specifies the number of columns in the data (or number of characters, in
the case of strings). The name is an ASCII string of arbitrary length (but
without any whitespace characters).

Note that strings and numeric variables are, technically, encoded differently.
Data should always be readable by a human in a text-editor, meaning that numeric
values are converted to their ASCII equivalent, while strings are stored
directly without converting every single character to an ASCII digit.
There is no indication in the header about which type of data a variable
contains and so it is up to the user to read variables using the correct
decoder.

Matrices are stored by converting each element to its ASCII equivalent. Elements
in the same row are separated by single spaces, while rows are separated by
(Unix) newlines (i.e. just one \n or 0xA character).

Example SDT file

An example SDT file containing three variables is shown below:

1 2 maxis
1.688510 0.048496

3 3 someMatrix
1.1 2.2 3.3
4.4 5.5 6.6
7.7 8.8 9.9

1 29 someString
This is an SDT example string

Troubleshooting

Images contain very sharp, very bright lines.
Are particles with large pitch angles being simulated? If so, there’s a numerical issue that could potentially arise. In the calculation of a synchrotron image, the Jacobian for the orbit \(J = (\partial R/\partial\rho)(\partial Z/\partial\tau) - (\partial R/\partial\tau)(\partial Z/\partial\rho)\) must be computed. The derivatives with respect to \(\tau\) are straight-forward, but to find the derivatives with respect to \(\rho\) (the radius at which the particle is initiated) we must compute one additional orbit, at \(\rho+\epsilon\), where \(\epsilon\) is an arbitrarily small number. Internally, this number is fixed to \(10^{-6}\), which should be sufficient for most cases. If however the orbits corresponding to \(\rho\) and \(\rho+\epsilon\) lie on opposite sides of the trapped-passing boundary, this will lead to a large error in the computations of the derivatives which will amplify one particular orbit. Currently, the best approach for fixing this should be to make the value of macro JACOBIAN_ORBIT_STEP in src/include/global.h smaller.

Index

 A
 | B
 | C
 | D
 | F
 | G
 | I
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	
 axis

 	command line option

B

 	
 	
 B0

 	command line option

 	
 	
 brightness

 	command line option, [1]

C

 	
 	
 charge

 	command line option

 	
 command line option

 	B0

 	axis

 	brightness, [1]

 	charge

 	cospitch

 	debug

 	domain_has_outer_wall

 	file

 	format, [1]

 	function

 	gc_position

 	includeseparatrix

 	includewall

 	interptimestep

 	magnetic_field

 	major_radius

 	mass

 	maxtimestep

 	minor_radius

 	name, [1], [2]

 	nodrifts

 	output, [1]

 	p

 	pitch

 	pixels, [1], [2], [3]

 	point0

 	point1

 	ppar

 	pperp

 	progress

 	r

 	rdyn

 	safety_factor

 	stokesparams

 	suboffseti

 	suboffsetj

 	subpixels

 	t

 	threads

 	tolerance

 	type

 	useequation

 	usetool

 	wall

 	
 	
 cospitch

 	command line option

D

 	
 	
 debug

 	command line option

 	
 	
 domain_has_outer_wall

 	command line option

F

 	
 	
 file

 	command line option

 	
 format

 	command line option, [1]

 	
 	
 function

 	command line option

G

 	
 	
 gc_position

 	command line option

I

 	
 	
 includeseparatrix

 	command line option

 	
 includewall

 	command line option

 	
 	
 interptimestep

 	command line option

M

 	
 	
 magnetic_field

 	command line option

 	
 major_radius

 	command line option

 	
 mass

 	command line option

 	
 	
 maxtimestep

 	command line option

 	
 minor_radius

 	command line option

N

 	
 	
 name

 	command line option, [1], [2]

 	
 	
 nodrifts

 	command line option

O

 	
 	
 output

 	command line option, [1]

P

 	
 	
 p

 	command line option

 	
 pitch

 	command line option

 	
 pixels

 	command line option, [1], [2], [3]

 	
 point0

 	command line option

 	
 	
 point1

 	command line option

 	
 ppar

 	command line option

 	
 pperp

 	command line option

 	
 progress

 	command line option

R

 	
 	
 r

 	command line option

 	
 	
 rdyn

 	command line option

S

 	
 	
 safety_factor

 	command line option

 	
 stokesparams

 	command line option

 	
 suboffseti

 	command line option

 	
 	
 suboffsetj

 	command line option

 	
 subpixels

 	command line option

T

 	
 	
 t

 	command line option

 	
 threads

 	command line option

 	
 	
 tolerance

 	command line option

 	
 type

 	command line option

U

 	
 	
 useequation

 	command line option

 	
 	
 usetool

 	command line option

W

 	
 	
 wall

 	command line option

 _images/box.png
AANANAN
)N NN
| NI

NG

NN
OSSN
ORI
| TN,
“"r.‘\m.sh\n.=“.“\-4"~'
N /]
| TN,
TR

N N NN

_static/comment-bright.png

_images/soft.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to SOFT’s documentation!

 		
 Introduction

 		
 Compiling

 		
 Dependencies

 		
 Obtaining the code

 		
 Compiling

 		
 Usage

 		
 How to run SOFT

 		
 Examples

 		
 Basic syntax

 		
 Environments

 		
 magnetic

 		
 particles

 		
 tool

 		
 sycout

 		
 Magnetic equilibria

 		
 Analytic circular

 		
 Numeric

 		
 Variables

 		
 Distribution functions

 		
 File format

 		
 Helper tools for CODE/NORSE

 		
 Geometric kernels

 		
 Output file

 		
 Working with kernel function

 		
 Polarization information

 		
 What information does SOFT store?

 		
 File format

 		
 3D emission maps

 		
 Solving for surface-of-visibility

 		
 Visualizing

 		
 Parameter reference

 		
 Global options

 		
 Particle settings

 		
 Magnetic settings

 		
 circular

 		
 numeric

 		
 sycout settings

 		
 green

 		
 image

 		
 space3d

 		
 spectrometer

 		
 topview

 		
 The SDT format

 		
 Basic structure

 		
 Example SDT file

 		
 Troubleshooting

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

